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Abstract. Symbolic execution is a well-known program
analysis technique which represents values of program
inputs with symbolic values instead of concrete (initial-
ized) data and executes the program by manipulating
program expressions involving the symbolic values. Sym-
bolic execution has been proposed over three decades
ago but recently it has found renewed interest in the
research community, due in part to the progress in deci-
sion procedures, availability of powerful computers and
new algorithmic developments. We provide here a sur-
vey of some of the new research trends in symbolic exe-
cution, with particular emphasis on applications to test
generation and program analysis. We first describe an
approach that handles complex programming constructs
such as input data structures, arrays, as well as multi-
threading. We follow with a discussion of abstraction
techniques that can be used to limit the (possibly infi-
nite) number of symbolic configurations that need to be
analyzed for the symbolic execution of looping programs.
Furthermore, we describe recent hybrid techniques that
combine concrete and symbolic execution to overcome
some of the inherent limitations of symbolic execution,
such as handling native code or availability of decision
procedures for the application domain. Finally, we give
a short survey of interesting new applications, such as
predictive testing, invariant inference, program repair,
analysis of parallel numerical programs and differential
symbolic execution.

1 Introduction

Modern software systems must be extremely reliable and
correct. Automatic methods for ensuring software cor-
rectness range from static techniques, such as (software)
model checking or static analysis, to dynamic techniques,

such as testing. All these techniques have strengths and
weaknesses: model checking is automatic, exhaustive,
but may not scale. Static analysis, on the other hand,
scales to very large programs but may give too many
spurious warnings, while testing alone may miss impor-
tant errors (since it is inherently incomplete).

We survey here several recent research trends that
combine the strengths of these different techniques while
overcoming their weakness. In particular, we focus here
on approaches to software testing and analysis that are
based on symbolic execution. Symbolic execution [12, 36]
is a well known program analysis technique that allows
execution of programs using symbolic input values, in-
stead of actual data, and represents the values of pro-
gram variables as symbolic expressions. As a result, the
outputs computed by a program are expressed as a func-
tion of the symbolic inputs. Its applications range from
automated test input generation to proving program
partial correctness. Symbolic execution has been pro-
posed over three decades ago but recently it has found re-
newed interest in the research community, due in part to
the progress in decision procedures, availability of pow-
erful computers and new algorithmic developments.

In this paper we begin with a description of our
own approach [35,40] to symbolic execution that uses
a model checker to explore different symbolic execution
paths (Section 2). The approach applies to Java pro-
grams and it handles complex input data structures, ar-
rays, as well multi-threading.

Performing symbolic execution on looping programs
may result in a large (possibly unbounded) number of
symbolic program configurations that need to be ana-
lyzed. Therefore symbolic execution might not terminate
and in practice, we need to put a limit on the num-
ber of such symbolic configurations. An alternative is to
use abstraction techniques to try to limit the symbolic
space explored during symbolic execution. Qur abstrac-
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tions are inspired by the ones used in shape analysis [38]
and are described in Section 3.

We also discuss a popular recent technique (proposed
by others) that combines symbolic with concrete execu-
tion [28, 46] to overcome some of the inherent limitations
of symbolic execution, such as availability of decision
procedures and handling calls to native libraries (Sec-
tion 4). Other related hybrid approaches are discussed
in the same section.

We follow with a description of various “classical”
applications such as test input and sequence generation,
proving program correctness, and static detection of run-
time errors. We also describe some novel, “not so classi-
cal” applications, that use symbolic execution or its vari-
ants for predictive testing, dynamic invariant generation,
data structure repair, analysis of parallel numerical pro-
grams and differential symbolic execution (Section 5).
Section 6 gives a short conclusion.

We give most of our presentation in terms of Java
(because this was the context of our own work) but we
believe that most of the presentation could also be gen-
eralized to other languages.

2 Symbolic Execution

2.1 Background

The main idea behind symbolic execution [12,36] is to
use symbolic values, instead of actual data, as input val-
ues, and to represent the values of program variables
as symbolic expressions. As a result, the output values
computed by a program are expressed as a function of
the input symbolic values.

The state of a symbolically executed program in-
cludes the (symbolic) values of program variables, a path
condition (PC) and a program counter. The path condi-
tion is a (quantifier-free) boolean formula over the sym-
bolic inputs; it accumulates constraints which the inputs
must satisfy in order for an execution to follow the par-
ticular associated path. A symbolic execution tree char-
acterizes the execution paths followed during the sym-
bolic execution of a program. The tree nodes represent
program states and they are connected by program tran-
sitions.

Consider the code fragment in Figure 1 (left) [35],
which swaps the values of integer variables x and y,
when x is greater than y. Figure 1 (right) shows the cor-
responding symbolic execution tree. Initially, PC is true
and x and y have symbolic values X and Y, respectively.
At each branch point, PC is updated with assumptions
about the inputs, in order to choose between alterna-
tive paths. For example, after the execution of the first
statement, both then and else alternatives of the if
statement are possible, and PC is updated accordingly.
If the path condition becomes false, i.e., there is no set
of inputs that satisfy it, this means that the symbolic

state is not reachable, and symbolic execution does not
continue for that path. For example, statement (6) is
unreachable.

2.2 Ezploring the symbolic execution tree using a
model checking tool

Symbolic execution traditionally arose in the context of
checking sequential programs with a fixed number of
integer variables. Several recent approaches [10,13,20]
implement dedicated tools to perform various program
analyses based on some form of symbolic execution.

In our past work [35] we have defined a generalization
of traditional symbolic execution that does not require
a dedicated tool but instead enables a standard model
checking tool (for the underlying language) to perform
symbolic execution. Our approach targets Java programs
and it handles complex input data structures and arrays
(via “lazy initialization” as explained below) as well as
concurrency. The Java PathFinder (JPF) model check-
ing tool [32] is used to explore the symbolic execution
tree of the analyzed program. Thus, we take advantage
of the model checker’s built-in state space exploration ca-
pabilities, such as different search strategies (e.g., heuris-
tic search), checking of temporal properties, and partial
order and symmetry reductions. A similar tool [19] uses
the Bogor model checking framework, instead of JPF,
and a “lazier” treatment of initialization for input data
structures.

We defined a source-to-source translation that instru-
ments a Java program by adding non-determinism and
support for manipulating formulae that represent path
conditions in such a way that it enables JPF to perform
symbolic execution of the program. The model checker
checks the symbolic state space of the program using
its usual state space exploration techniques. A symbolic
state includes a heap configuration, a path condition
on primitive fields, and thread scheduling. Whenever a
path condition is updated, it is checked for satisfiabil-
ity using off-the-shelf decision procedures, such as the
Omega library [45] for linear integer constraints. If the
path condition is unsatisfiable, the model checker back-
tracks. Pre-conditions are used to restrict the symbolic
search space (to only enable exploration of inputs that
satisfy the preconditions).

A specialized type-dependence analysis [2] can be
used to minimize the instrumentation effort, by deter-
mining which parts of the code depend on the inputs
and therefore needs to be instrumented (the rest of the
code remaining unchanged). We describe some details
of the instrumentation in Section 2.8 (in the context of
handling input arrays).

Recently, we have investigated a second approach,
that does not require the program instrumentation, but
instead implements a non-standard interpreter of Java
bytecodes [43].
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Fig. 1. Code that swaps two integers and the corresponding symbolic execution tree (transitions are labeled with program control points)

2.3 Checking safety properties and generating test
mputs

Our symbolic execution framework can be used for find-
ing errors to safety properties and for test input gen-
eration. Safety properties can be written in the logi-
cal formalism recognized by the model checker or they
can be specified with code instrumentation, as in [7].
While checking correctness, the model checker reports
counterexample(s) that violate a correctness criterion.
While generating test inputs, the model checker gener-
ates paths that are witnesses to a testing criterion en-
coded as a safety property (see e.g. [25,31]). For a re-
ported counterexample, the model checker also reports
the input heap configuration, the path condition for the
primitive input fields thread scheduling, which can be
used to reproduce the error.

2.4 Handling multi-threaded and non-deterministic
systems

As mentioned, our approach allows a standard model
checker to perform symbolic execution. We use the model
checker also to systematically analyze thread interleav-
ings and other forms of nondeterminism that might be
present in the code.

2.5 Loops, recursion, method invocations

We exploit the model checker’s search abilities to han-
dle arbitrary program control flow. We do not require
the model checker to perform state matching, since state
matching is, in general, undecidable when states repre-
sent path conditions on unbounded data. Note also that
performing (forward) symbolic execution on programs
with loops can explore infinite execution trees. There-
fore, for systematic state space exploration we put a
limit on the search depth of the model checker or we

limit the size of the constraints in the path condition.
Note that our symbolic approach can be used for find-
ing counterexamples to safety properties; it can prove
correctness for programs that have finite execution trees
and have decidable data constraints. For proving proper-
ties of programs with unbounded loops, one would need
to annotate the program with loop invariants (see dis-
cussion in Section 5.3).

2.6 Handling Input Data Structures

We use a lazy initialization algorithm for symbolically
executing a method that takes as inputs complex data
structures with unbounded data. The algorithm starts
execution of the method on inputs with wuninitialized
fields and it assign values to these fields “lazily”, i.e.,
when they are first accessed during the method’s sym-
bolic execution. This allows symbolic execution of meth-
ods without requiring an a priori bound on the number
of input objects.

We explain how the algorithm symbolically executes
a method with one input object, i.e., the implicit in-
put this. Methods with multiple parameters are treated
similarly.

To execute a method m in class C, the algorithm first
creates a new object o of class C with uninitialized fields.
Next, the algorithm invokes o.m() and the execution
proceeds following Java semantics for operations on ref-
erence fields and following traditional symbolic execu-
tion for operations on primitive fields, with the excep-
tion of the special treatment of accesses to uninitialized
fields.

— When the execution accesses an uninitialized refer-
ence field, the algorithm nondeterministically initial-
izes the field to null, to a reference to a new object
with uninitialized fields, or to a reference of an object
created during a prior field initialization; this system-
atically treats aliasing. When the execution accesses
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an uninitialized primitive field, the algorithm first
initializes the field to a new symbolic value of the
appropriate type and then the execution proceeds ac-
cording to the standard execution semantics.

— When the execution evaluates a branching condition
on primitive fields, the algorithm nondeterministi-
cally adds the condition or its negation to the corre-
sponding path condition and checks the path condi-
tion’s satisfiability using a decision procedure. If the
path condition becomes infeasible, the current exe-
cution terminates (i.e., the algorithm backtracks).

2.7 Example

We illustrate how lazy initialization works using the ex-
ample from Figure 2 (left), which gives the Java dec-
laration of a class Node that implements singly-linked
lists. The fields elem and next represent, respectively,
the node’s integer value and a reference to the next node.
The method swapNode destructively updates its input
list (referenced by the implicit parameter this) to sort
its first two nodes and returns the resulting list.

We used symbolic execution to check that there are
no unhandled runtime exceptions during any execution
of swapNode. The result of the check is that the prop-
erty holds; the analyzed executions are summarized in
Figure 2 (right). These executions together represent all
possible actual executions of swapNode. For each exe-
cution, we show the corresponding input structure, the
constraint on the integer values in the input and the out-
put structure. Thus for each row, any actual input list
that has the given structure and has integer values that
satisfy the given constraint, would result in the given
output list. The value “?” for an elem field indicates
that the field is not accessed and the “cloud” indicates
that the next field is not accessed.

If we comment out the check for null on line (1)
in swapNode, our framework reports that for the top
most input in Figure 2, the method raises an unhandled
NullPointerException. All other input/output pairs
stay the same.

The symbolic execution tree in Figure 3 illustrates
the (simplified) symbolic execution tree that results from
the symbolic execution of swapNode. Each node of the
execution tree denotes a state, which consists of the state
of the heap (including the symbolic values of the elem
fields) and the path condition accumulated along the
branch (path) in the tree. A transition of the execution
tree connects two tree nodes and corresponds to either
execution of a statement of swapNode or to a lazy ini-
tialization step. Branching in the tree corresponds to
a nondeterministic choice that is introduced to handle
aliasing or build a path condition.

Symbolic execution starts by first creating a new
node object and invoking swapNode on the object. The
first access to the uninitialized next field happens at line

(1) and causes it to be initialized. Lazy initialization ex-
plores three possibilities: either the field is null or the
field points to a new symbolic object or the field points to
a previously created object of the same type (with the
only option being itself). Intuitively, this means that,
at this point in the execution, we make three different
assumptions about the configuration of the input list,
according to different aliasing possibilities. Another field
initialization happens during execution of statement (4),
which results in four possibilities, as there are two Node
objects at that point in the execution.

When a condition involving primitive fields is sym-
bolically executed, e.g., statement (2), the execution tree
has a branch corresponding to each possible outcome of
the condition’s evaluation. Evaluation of a condition in-
volving reference fields does not cause branching unless
uninitialized fields are accessed.

If swapNode has the precondition that its input
should be acyclic, then symbolic execution does not ex-
plore the transitions marked with an “X”.

In order to keep track of the input data structures
for programs with destructive updating, we build map-
pings between objects with un-initialized fields and ob-
jects that are created when those fields are initialized
(these maps are used to re-construct the input struc-
tures, e.g. for test input generation).

2.8 Handling Input Arrays

Symbolic execution for programs that have as inputs
arrays of unspecified size can also use lazy initializa-
tion [40].

Consider the code shown in Figure 4 (left). This
method takes as a parameter an array of integers a and
it sets all the elements of a to zero. This method has a
precondition that its input is not null. The assert clause
declares a partial correctness property that states that
after the execution of the loop, the value of the first ele-
ment in a is zero (we will describe in Section 5.3 how we
can use symbolic execution and loop invariants to prove
this property).

In order to symbolically execute the code we first
instrument it to enable JPF to perform symbolic exe-
cution. The instrumented code and part of the library
classes that we provide are illustrated in Figure 4 (right)
and Figure 5, respectively. The interested reader is re-
ferred to [35, 40] for a detailed description of code instru-
mentation, here we just highlight some key features.

The main idea is to replace concrete types with cor-
responding “symbolic types” (i.e. library classes that
we provide) and concrete operations with method calls
that implement “equivalent” operations on symbolic
types. Classes Expression and IntArrayStructure
support manipulation of symbolic integers and sym-
bolic integer arrays, respectively. The static field
Expression. _pc stores the (numeric) path condition.
Method _update LT makes a nondeterministic choice
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class Node {

1:
2
3:
4
5
6

7:

}

int elem;
Node next;

Node swapNode() {
if (next!=null)
if (elem-next.elem>0){
Node t = next;
next = t.next;
t.next = this;
return t;
}

return this;

}

Input list + Constraint
none
ﬂq(:; (E0<=E1)
next (E0> E1)
net o (E0> E1)
next next (E0> E1)
ﬂﬁ% (E0>E1)

=> Returned list

=>

=> next

= na<t

-
_ next

= next

Fig. 2. Code to sort the first two nodes of a list (left) and an analysis of this code using our symbolic execution based approach (right)

. next .
|

// @ precondition: a != null;
void example(int[] a) {

1: int i = 0;

while (i < a.length) {

2:
3: al[i]l = 0;
4: i+

)

}

a

Fig. 4. Array example (left) and corresponding instrumented code (right)

assert a[0] == 0;

instmt 1

instmt 2

instmt 2

instmt 4

Fig. 3. Symbolic execution tree (excerpts)

void example() {
IntArrayStructure a =
Expression i =

}

}

} Initialize "next"

} Initialize "elem"

Initialize "t.next"

} Initialize "next.elem”

new IntArrayStructure();
new IntegerConstant(0) ;

while (Expression.pc._update_LT(i,a.length)) {
a._set(i,new IntegerConstant(0));
i = i._plus(new IntegerConstant(1));

assert Expression.pc._update_EQ(
a._get(new IntegerConstant(0)),0);
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class Expression { ...
static PathCondition pc;
Expression _plus(Expression e){

.1}

class PathCondition { ...
Constraints c;
boolean _update_LT(Expression 1,
Expression r){
boolean result;
result=Verify.choose_boolean();
if (result)
c.add_constraint_LT(el,e2);
else
c.add_constraint_GE(el,e2);
Verify.ignoreIf(!c.is_sat());
return result;

}}

class IntArrayStructure {
Vector _v;
Expression length;

ArrayCell _new_ArrayCell(Expression idx) {
for(int i=0;i<_v.size();i++) {
ArrayCell cell=(ArrayCell)_v.elementAt(i);
if (Expression.pc._update_EQ(cell.idx,idx))
return cell;
T
ArrayCell t=new ArrayCell(length,idx,name);
_v.add(t);
return t;
¥
public Expression _get(Expression idx) {
assert(Expression.pc._update_GE(idx, 0)&&
Expression.pc._update_LT(idx,length));
ArrayCell cell = _new_ArrayCell(idx);
return cell.elem;

}}

Fig. 5. Library classes

(i.e., a call to choose_boolean) to add to the path con-
dition the constraint or the negation of the constraint
its invocation expresses and returns the corresponding
boolean. Method is_sat uses a decision procedure to
check if the path condition is infeasible (in which case,
JPF will backtrack). Method _plus constructs a new
Expression that represents the sum of its input param-
eters. IntegerConstant is a subclass of Expression and
wraps concrete integer values.

To store the input array elements that are created as
a result of a lazy initialization, we use a variable of class
Vector, for each input array. The _get and _set methods
use the elements in this vector to systematically initial-
ize input array elements. When the execution accesses a
symbolic array cell, the algorithm nondeterministically
initializes it to a new cell or to a cell that was created
during a prior cell initialization. The assertion checks in
the _get/_set methods establish that there are no array
out of bounds errors.

2.9 Other Challenges to Symbolic Ezecution

Other typical challenges to symbolic execution include
handling common library classes and /or native code (i.e.
code that can not be analyzed directly by symbolic exe-
cution). Such code needs to be modeled explicitly to be
considered by the symbolic execution (see e.g. [44]).

A promising approach that targets Java string library
classes is presented in [47]. In that work, the implemen-
tation details of strings are abstracted away the using
finite state automata, resulting in scaling of symbolic
execution to complex string manipulating applications.

Section 4 describes an orthogonal technique that
combines concrete and symbolic execution to address
this problem.

2.10 Integrating Multiple Decision Procedures

Perhaps the main challenge to symbolic execution is the
availability of the decision procedures for the application
domain and the number of constraints that can be han-
dled by the decision procedure/constraint solver. This is
why symbolic execution is most effective at unit or sub-
system level; i.e. for analyzing a procedure or a set of
procedures.

To (partially) alleviate this problem, we equipped
our symbolic execution framework with a generic inter-
face to multiple decision procedures (e.g. CVC3, Yices,
STP, etc., [4]). More recently, we have also integrated
two constraint solvers for real constraints (Choco and
TASolver) [43]).

The user can chose between multiple decision pro-
cedures that interact in different modes with the sym-
bolic execution framework. Furthermore, there are dif-
ferent optimizations possible for this interaction, e.g. if
the decision procedure supports incremental constraint
solving, the path condition is not sent at once to the con-
straint solver for solving, but rather just the new con-
straint that should be added/removed before checking
satisfiability.

3 Abstraction

As mentioned, performing symbolic execution on loop-
ing programs may result in an infinite execution tree.
Therefore we perform search with limited depth, or put
a limit on the number of constraints in the path con-
dition. An alternative approach [3,52] considers state
matching techniques to limit the state space search. The
approach involves checking when a symbolic state (s;) is
subsumed by another symbolic state (s;), i.e., the set of
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concrete states represented by s; is included in the set
of concrete states represented by s;.

Subsumption is used to determine when a symbolic
state is revisited, in which case the model checker back-
tracks, thus pruning the state space search. Even with
subsumption, the number of symbolic states may still be
unbounded. We therefore defined abstraction mappings
to be used during state matching. More precisely, for
each explored state, the model checker computes and
stores an abstract version of the state, as specified by
the abstraction mappings. Subsumption checking then
determines if an abstract state is being revisited. This
effectively explores an under-approzimation of the (fea-
sible) paths through the program. Therefore the tech-
nique is still useful for finding safety errors or for test
input generation (see Section 5.2 for a discussion of ap-
plications of abstract subsumption in the context of test
sequence generation).

3.1 Example

In our approach [3] we defined abstract subsumption
checking for singly linked lists and arrays (by reducing
their representation to lists). The abstraction that we
have implemented are inspired by [38,57] and are based
on the idea of summarizing all the nodes in a mazimally
uninterrupted list segment with a summary node. The
main difference between [38,57] and our abstractions is
that we also summarize the numeric data stored in the
summarized nodes and we give special treatment to un-
initialized nodes. The numeric data stored in the ab-
stracted list is summarized by setting the valuation for
the summary node to be a disjunction of the valuations
of the summarized nodes. Intuitively, the numeric data
stored in a summary node can be equal to that of any
of the summarized nodes.

We illustrate abstract subsumption for singly-linked
lists using the example in Figure 6. For more details,
please see the related paper [3].

Figure 6 depicts two symbolic states, sg and s12 that
resulted during the analysis of a list manipulating pro-
gram [3]. These states can not be matched, since their
“heap shape” is different. However, let us consider the
abstract heap shape and the corresponding valuations
for state s12. The abstracted state is subsumed by state
sg since the corresponding heap shapes match (as illus-
trated by the common node labels Iy, ls, I3). Further-
more, there is a valid logical implication between the
normalized numeric constraints of the two states.

4 Combining Concrete and Symbolic Execution

Several recent tools implement a new hybrid analy-
sis approach, that performs a concrete execution along
symbolic execution for dynamic test generation, e.g.

1: void foo(int x,int y){

2 int z = x*x*x; /* could be z = h(x) */
3 if (y == z) {

4: assert(false); /* error */

5: }

6: }

Fig. 7. Code for illustrating concolic execution

DART [28], CUTE [37,46], EXE [11], PEX [42]. This
popular approach has been applied to finding errors in
many challenging areas such as Web and data-base ap-
plications [6, 21, 54].

The idea is to perform a concrete execution on ran-
dom inputs and at the same time to collect the path con-
straints along the executed path; this is also called “con-
colic execution”. These path constraints are then used to
compute new inputs that drive the program along alter-
native paths. More specifically, one can negate one con-
straint at a branch point to guide the test generation pro-
cess towards executing the other branch. An off-the-shelf
constraint solver is called to solve the path constraints
and to obtain the test inputs. The program is executed
on these new inputs, constraints are collected along the
new program path and the process is repeated until all
the execution paths are covered (therefore it may never
terminate) or until the desired test coverage is achieved.
The approach works by code instrumentation and does
not use model checking (therefore can not analyze multi-
threading systematically). However, the main advantage
of this hybrid approach is that the concrete execution
can be used “to help” the symbolic execution in certain
situations, e.g. when there are no available decision pro-
cedures or in the presence of native calls.

4.1 Example

As an example, consider the code in Figure 7 [26].
Assume we have decision procedures/constraint solvers
that can reason about linear constraints only. Initially
the inputs that were randomly generated are x = 3 and
y = 7. The concrete value of z is 27, but the symbolic
value is z = X*X*X, and the path condition (correspond-
ing to the else branch) is Y != X*X*X; therefore the de-
cision procedures cannot handle it. However, instead of
taking the symbolic value z = X*X*X in the path condi-
tion, one can take the concrete value (i.e. z = 27). The
path condition then becomes Y != 27 and the execu-
tion continues until the end of the procedure. In order
to obtain inputs that guide the execution towards the
than branch, one needs to solve Y == 27 which can be
done easily with the available constraint solver. The pro-
gram is then re-executed with the new inputs: x = 3 and
y = 27 and the error at line 4 is discovered.

Assume now that instead of int z = x*x*x;, state-
ment 2 is int z = h(x);, where h is some library func-
tion (alternatively assume its code is simply un-available
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valuation: e; = v1 A ey = vy A ez = U3
PC: vy <vAv <w
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Fig. 6. Abstract subsumption between sg and si2

to symbolic execution, e.g., could not be instrumented).
Then the same reasoning as above can be applied (there-
fore eliminating the need for explicit modeling of h). Of
course, there may be some situations when such an ap-
proach would not be recommended, due to certain side-
effects of method h (e.g., writing data to a file that is
later read and affects the execution). In that case, some
modeling would still be required.

4.2 Compositional Symbolic Ezecution

The main obstacle for scaling hybrid concrete-symbolic
execution to reasoning about complex programs is the
large (possible infinite) number of paths that need to
be explored. Recent work [1,27] proposes compositional
reasoning as a means of scaling up symbolic execution.
The work has been done in the context of the hybrid
concrete-symbolic execution described above, but we be-
lieve that it can also be extended to “classical” symbolic
execution (introduced in Section 2).

The idea is to use “summaries” of individual func-
tions (similar to inter-procedural static analysis); these
summaries are computed “top down”, on a demand
driven basis. If £() calls g(), one can analyze/test g()
separately, summarize the results, and use g()’s sum-
maries when analyzing/testing f () ; thus, each method is
analyzed separately and the over-all number of analyzed
paths is smaller than in the case the two procedures are
analyzed as a whole.

4.8 Other Combined Analyses

In concolic execution the idea is to perform a concrete ex-
ecution together with a symbolic analysis that is used to
produce inputs to cover “new” behavior with the aim to
uncover errors. One can also take the opposite approach
by first doing a symbolic (usually in-precise) analysis to
find a possible error and then perform a concrete execu-
tion (i.e. run the program) to determine if it is real or
not. The reason for this second step is that the symbolic
execution can be unsound (it might follow paths in the
code that are not possible in reality); this may happen
if the analysis is only intra-procedural (don’t follow pro-
cedure calls) and just returns new unconstrained sym-
bolic values for the returned values of the procedures

that are not analyzed. The Check&Crash system [16]
uses ESC/Java [23] to do the symbolic analysis and then
JCrasher to execute the test to see if it is a real test.

In [51] a custom symbolic execution is used that al-
lows inter-procedural analysis in which the degree of pro-
cedure nesting can be varied (see Section 5.5 for more
details).

Other related hybrid techniques include the use of
concrete execution to effectively “set-up” the environ-
ment for symbolic execution [44] and a combination of
test case generation based on symbolic execution and
run-time monitoring [5]; both these techniques have been
applied in the context of NASA software systems. Fur-
thermore, other related approaches [29, 58] seek to com-
bine abstraction techniques (with automatic abstraction
refinement) and theorem proving for program analysis
and testing.

5 Applications/Analyses

Symbolic execution has many applications, most notably
in testing and proving program correctness. We discuss
them below, together with some exciting new applica-
tions.

5.1 Test Input Generation

Obtaining high coverage is always the goal of testing,
but the reality is that structural coverage is the only
meaningful measure of test adequacy and as such ob-
taining high structural coverage is often the goal of test
case generation techniques. Symbolic execution lends it-
self particularly well to this task, since the path condi-
tion to reach a branch or statement in the code (the two
most often used forms of structural coverage in indus-
try; statement and branch coverage) when solved, gives
exactly the inputs to reach the statement or branch (i.e.
the test inputs for the test case). We refer to this as test
generation for white-box testing.

In addition one can also do test generation in a
black-box fashion by essentially using the same gen-
eral technique, but now instead of symbolically execut-
ing the program under test, one executes a Java predi-
cate characterizing all valid input structures for the code
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(often called the representation invariant, or, repOk()
method [9, 53]). The objective here is to generate “sym-
bolic” structures that satisfy the representation invari-
ant that can be concretized (by solving the path condi-
tion to reach a valid structure) to a valid input for the
program under test. This general approach, although not
using symbolic execution, was popularized by the Korat
tool [9]. See [53] for a detailed description of using sym-
bolic execution to generate test inputs in this fashion.

5.2 Test Sequence Generation

Both the white- and black-box techniques described
above suffer from the issue that one can generate inputs
that are actually not possible during normal execution of
the program. In the white-box case this can happen since
it is typical to analyze each API (application program-
ming interface) call for a system in isolation and it may
happen that in reality the calling context of a method
may provide some implicit pre-conditions. Similarly in
the black-box case it may simply be that although a cer-
tain input is legal it can actually never be provided as
an input (i.e. it can not be constructed using the public
methods/fields allowed by the respective java class).

To alleviate these concerns one can generate se-
quences of inputs, rather than single input methods [52,
56]. As a simple example, consider a class BinTree that
provides a Java implementation of binary search trees.

public class BinTree {
private Node root;

public void add (int x) { ...}
public boolean remove (int x) { ... }

}
A test sequence for this class is as follows:

BinTree t = new BinTree();
t.add(1); t.add(2); t.remove(l);

It contains a sequence of method calls in the class
interface (e.g. add and remove), with some method ar-
guments, that builds relevant object states and exercise
the code in some desired fashion (e.g. to achieve state-
ment or predicate coverage [52]).

Generating test sequences can be done by enumerat-
ing all the possible test sequences (up to a given size) and
executing them symbolically (to account for the method
arguments). The main problem now however becomes
that analyzing all combinations of possible interface calls
quickly produces a state explosion. The solution is to
provide a mechanism for state-matching between API
calls in this symbolic case.

Although this problem is undecidable in general, if
one only considers container classes storing integer data
(a very common case) it is tractable. One can also match
states using an abstraction of the state (as explained in

Section 3), i.e. match abstract versions of states where
the concretized states will not match. The trade-offs are
obvious, match too liberally (i.e. using abstraction) and
the coverage will not be obtained, and match too finely
(i-e. check full subsumption on symbolic states), and run
the risk of never terminating the search.

Using the shape of the container as the abstraction
function was found to be particularly powerful [52]: for
example, we could show that the shortest sequence of
API calls on a Fibonacci Heap implementation to obtain
statement coverage was 12. This is an interesting result
in itself, since the code is only a few hundred lines long
and to obtain the simplest form of coverage requires 12
calls.

For a detailed study of the various techniques for gen-
erating test sequences for container classes see [52] (all
examples are made available though the JPF Source-
Forge website). We analyzed java implementations for
Binary Tree, Fibonacci Heap, Binomial Heap, Tree
Map). We compared explicit state model checking, sym-
bolic and concrete execution (with and without abstract
matching) and random testing. We found that symbolic
execution worked better than explicit model checking
and that, not surprisingly, shape abstraction provides
an accurate representation of containers. We found that
random testing worked pretty well but it requires longer
sequences to achieve good coverage.

5.3 Proving Program Properties

If there is an upper bound on the number of times each
loop in the program may be executed, symbolic execu-
tion can be used for proving correctness, since the cor-
responding symbolic execution tree is finite.

However, for most programs, no fixed bound on the
number of times each loop is executed exists and the cor-
responding execution trees are infinite. In order to prove
the correctness of such programs, one needs traversing
the symbolic execution tree inductively rather than ex-
plicitly [30], using annotations in the form of loop in-
variants. Such annotations are provided by the user or
may be discovered automatically, see e.g. [14,15,24,39,
40,49, 55]. Recent tools that implement such reasoning
include ESC/Java [23] (it does not use traditional sym-
bolic execution, but similar symbolic reasoning) and Bo-
gor/Kiasan [19] for reasoning about properties of Java
programs. Furthermore, Smallfoot [8] uses symbolic ex-
ecution and separation logic for proving Hoare-style
triples on heap-manipulating programs.

For simplicity of presentation, we illustrate the tech-
nique on a single-loop program such as the one in Fig-
ure 8 (left); multiple loops can be treated similarly, see
e.g. [55]. The program consists of some (loop-free) ini-
tialization code, a loop with condition C and (loop-free)
body B, and post condition P.

To verify that P holds, it suffices to find a loop in-
variant I, i.e. a formula that is true when entering the
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init;

while (C) {
B;

}

assert P;

init;
assert I; /* base case */
make symbolic variables read in B;
assume I;
if (C) {
B;
assert I; /# induction step */
}
else
assert P;

Fig. 8. Single loop program (left) and instrumented program for proof (right)

loop, re-entering the loop during its iteration and exiting
the loop [30]. Moreover, I must be strong enough to pro-
duce verifiable results (hence a loop invariant true is, in
general, not sufficient). In a symbolic execution frame-
work, this amounts to checking the three assertions in
the modified program in Figure 8 (right). Here, we re-
placed the while statement with an if statement; this is
equivalent to placing a “cut” in the loop [30]. At this cut
point, we consider all the variables that are modified in
the loop body initialized to new symbolic values, and the
path condition initialized to true. Note that a symbolic
execution from this point on is representative of an ar-
bitrary number of loop unrollings; the “input variables”
at the cut point are the variables that are modified by
the loop body and their new symbolic values represent
all cases. Since the program loop has been cut, this sym-
bolic execution will terminate and have a finite symbolic
execution tree.

We then use symbolic execution to check three asser-
tions :

— the assertion at line (4) is the base case of the induc-
tive argument and checks that I holds when entering
the loop

— the assertion at line (7) is the induction step and
checks that, assuming I holds at the beginning of
the loop, I also holds after the execution of the loop
body (i.e. I is inductive)

— the assertion at line (9) checks that I is strong enough
for the property to hold (i.e. I A—~C — P)

If there are no assertion violations in the loop-free
program of Figure 8 (right), then the program of Figure 8
(left) does not violate the property P.

5.4 Example

As an example, consider again the code presented in Fig-
ure 4. Using the loop invariant ¢ > 0, symbolic execution
can be used to automatically check that there are no
array bounds violations. This is a simple invariant that
can be stated without much effort. In order to prove that
there are no assertion violations, a more complex loop
invariant is needed, namely —(a[0] # 0 A4 > 0). In [40]
we present a technique that generates such invariants au-
tomatically, by iterative approximation. The technique

handles different types of constraints (e.g. boolean or
numeric, constraints on dynamically allocated data and
arrays) and it allows for checking universally quanti-
fied formulas. Such formulas are necessary for expressing
properties of programs that manipulate unbounded data
(such as the input array in Figure 4)

5.5 Static Detection of Run-time Errors

Using symbolic execution to find potential runtime-
errors is a well-known technique. The most famous ex-
ample of this is the success of Intrinsa’s PREfix tool [10]
that ultimately led to a buy-out by Microsoft. More re-
cent examples include the work of Engler et al. in [11]
for detecting runtime errors in C code and Tomb et al.
in [50] that detects errors in Java code.

The idea behind all these tools is to symbolically ex-
ecute a program until a state is reached where a runtime
violation is “possible”, for example a null-pointer deref-
erence, division by zero, etc., and a potential error is re-
ported. Unfortunately, due to mostly scalability issues,
one can often not execute programs from their inputs,
thus it is common to only analyze public or API methods
and often times only intra-procedurally. This means the
analysis can report errors that are not possible, so-called
spurious errors.

One approach to reduce the possible false positives is
to use the “variably inter-procedural” analysis described
in [50]. As the name suggests the idea here is to allow one
to vary the level of the inter-procedural analysis to follow
calls n levels deep. Furthermore the approach proposes
to solve the input constraints that are associated with
a possible error and to form a test case; the analysis
reports the error only if the test case actually produces
the expected error (similar to Check-n-Crash [16]).

5.6 Ezxamples

As an illustration of some of the advantages of
variably inter-procedural analysis, consider the pro-
gram in Figure 9 and the problem of detecting null
pointer dereferences. Lets first assume we use an intra-
procedural analysis where we don’t follow the calls to
the Integer.toHexString method (as is done in [16]);
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class Example {
public String hexAbs(int x) {
String result = null;
if(x > 0)
result = Integer.toHexString(x);
else if (x < 0)
result = Integer.toHexString(-x);
return result.toUpperCase();

}

O 00 ~N O U WN =

Jury
O .-
[

Fig. 9. A simple Java program that illustrates some benefits of
symbolic execution.

1: int target = ...;

2: int delta = ...;

3: foo(int i) {

4. if (similar(i,target)) {

5: y = 10/i; // interesting code
6: }

7: }

8: ...

9: boolean similar (int i, int target) {
10: if (((target - delta) <= i) &&
11: (target + delta) >= i)

12: return true;

13: return false;

14:}

Fig. 10. An example where intra-procedural analysis is sufficient.

a possible null pointer dereference will be flagged at line
8, with no constraints on the value of z.

Using variably inter-procedural symbolic execution,
we can do better. If we set the analysis to evaluate all
method calls up to a depth of 1, it can follow the calls to
Integer.toHexString, and determine that they never
return null values. Then, because it is a path-sensitive
analysis, it can determine that a null pointer dereference
can only happen (and must happen) if z = 0. Thus, the
analysis has ruled out the false positives (the assign-
ments on lines 5 and 7), and has given more information
about the true error (the missing case for z = 0). Given
the constraint on z, it is then straightforward to con-
struct a test case that will trigger the bug.

Varying the level of inter-procedural analysis can
have some interesting consequences, for example in [50]
it was found that going from an intra-procedural to an
inter-procedural analysis might not find more errors but
will reduce the number of possible errors the symbolic
analysis discovers (and thus will lead to test cases to
run to see if it is a real error). The code in Figure 10
illustrates the intuition for this behavior. Note that de-
pending on the value of target and delta there could be a
division by zero in this code. Let’s assume we pick target
= 100 and delta = 10, in which case there is no division
by zero. The result of an intra-procedural analysis is one
warning, but no error (since the warning corresponds to
the case when ¢ = 0 and that would make the division

1: foo(int m) {

2 answer (m) ;

3 m =m/(1-m);

4: }

5: ...

6: int answer(int v) {

7 return v == 42 7 1: 0;
8

: )

Fig. 11. An example where inter-procedural analysis is required.

unreachable). The reason for this behaviour is that the
call to similar is ignored and a fresh symbolic variable is
created to hold the result of the call.

However, an inter-procedural analysis results in no
warnings (and no errors) since the constraints on similar
combined with the fact that ¢ is 0 become infeasible.

The interesting case here is if we pick the values to
expose the problem (e.g. change target to 1). Now both
an intra- and an inter-procedural analysis expose the er-
ror. Note that an intra-procedural analysis also finds the
problem simply because the statement is reachable (by
picking target and delta to expose the problem); thus
adding the constraint that ¢ should be 0 to have a possi-
ble division by zero is enough to actually find the error.

One can also create an example to show the opposite
effect where obtaining additional constraints actually ex-
poses errors that would otherwise not have been found
— this happens when analyzing the code in Figure 11.
Here an intra-procedural analysis has no additional con-
straints on the input value m and thus the chances of the
test generation to randomly pick 42 is almost zero. How-
ever during an inter-procedural analysis the constraint
that m should be 42 is recorded and that would make
picking m trivial to expose the division by zero error.

In general a statement that is potentially buggy can
be reached in many more ways that don’t expose the er-
ror than in ways that will expose the error — if this is not
true then the error will be found and fixed quickly any-
ways. Therefore the additional constraints one obtains
by doing an inter-procedural analysis will mostly reduce
the number of infeasible paths (of an intra-procedural
analysis) that reach a potentially buggy statement but
it will not necessarily increase the likelihood of generat-
ing a test to reach the error.

An enhancement to the general approach of symbolic
execution for finding runtime errors is suggested in [22]
where it is pointed out that the analysis can be opti-
mized by taking the unconstrained inputs to a program
and then constraining them by the negation of the path
conditions corresponding to paths that lead to errors.
For example, consider the following code:

public void foo(Object o) {
0.Xx = 5;
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Assume o is unconstrained; a possible null-pointer
exception will be flagged on the dereference in the first
line. However since o is unconstrained one ignores this
error and rather remove the unconstrained “tag” from o
and replace it with the constraint that o is from now on
non-null. This technique eliminates false positives and
in addition constrains possible executions which allows
better scaling. One can ask but what if o was really null?
To account for that one can simply rank these potential
errors as lower priority to consider than ones that are
obtained from using the suggested technique.

5.7 Other Applications

Symbolic execution has many applications and it is im-
possible to enumerate them all. We can only list here
a few new “not so standard” applications of symbolic
execution (and related hybrid approaches):

— Predictive Testing [33] attempts to predict errors
from correct traces. The idea is to perform a “con-
colic execution” along concrete traces generated by
running an existing test suite and to check for asser-
tion violations and other types of errors along these
executions: the assertions that hold along a concrete
execution do not necessarily hold along the corre-
sponding symbolic execution (since the latter char-
acterizes multiple concrete executions).

— Invariant Inference [17] generates “likely” program
invariants in the form of method pre- and post- con-
ditions and class invariants that hold for a given set of
tests; the technique is similar in spirit to Daikon [18]
but uses the constraints collected during a symbolic
execution to come up with the invariants, instead of
the invariant patterns used by Daikon.

— Program and Data Structure Repair can be done us-
ing symbolic execution; e.g., given an assertion that
represents desired structural integrity constraints
and a structure that violates them, the algorithm
from [34] can “mutate” the given structure to sat-
isfy the constraints.

— Parallel Numerical Program Analysis [48] involves
combining model checking and symbolic execution to
establish the equivalence of a sequential and a par-
allel program. The sequential program acts as the
“specification” for the parallel one. The symbolic ex-
ecution is particularly tailored to handling floating
point arithmetic.

— Differential Symbolic Execution [41] computes the
“logical” differences between two versions of a pro-
gram; such differences can be used to automate soft-
ware evolution tasks such as regression test mainte-
nance, reducing re-certification activities or checking
behavioral equivalence of two programs after soft-
ware re-factoring.

6 Conclusions

In this paper, we surveyed new techniques based on sym-
bolic execution and we discussed some of their “tradi-
tional” applications, such as test generation and program
analysis, as well as some new, interesting applications.
The work related to the subject here is vast and it is
simply impossible to cover it all in one article. However,
we hope that this survey (albeit very limited) will serve
as a starting point for more new, exciting applications in
this area. For instance, an avenue for immediate future
research would be to “parallelize” all/any of the analyses
presented in this article.
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